Assignment – Anatomy of a Wave

For each wave:

- Draw the nodal line (use a ruler) [horizontal line midway between the crest and trough]
- Measure the wavelength in cm (use a ruler)
- State the number of wavelengths represented

Wave 1:

- Measure the amplitude in cm (use a ruler)
- If these are electromagnetic waves in space, use the wave equation to determine the frequency of each (c = 3.00×10^8 m/s = speed of electromagnetic waves in space): v=f λ = c

a) Draw the nodal line

- b) Measure the Wavelength: _____ cm
- c) Count the Number of waves represented ______ (there may be partial waves e.g. 2.5 λ , or 5.25 λ)
- d) Measure the Amplitude: _____ cm
- e) Calculate the Wave frequency: f = _____

Wave 2:

- a) Draw the nodal line
- b) Measure the Wavelength: _____ cm
- c) Count the Number of waves represented ______ (there may be partial waves e.g. 2.5λ , or 5.25λ)

Hz

- d) Measure the Amplitude: _____ cm
- e) Calculate the Wave frequency: f = _____ Hz

Physics 11 and AP Name:	Block:
Wave 3:	
 a) Draw the nodal line b) Measure the Wavelength: cm c) Count the Number of waves represented d) Measure the Amplitude: cm e) Calculate the Wave frequency: f = Hz 	(there may be partial waves – e.g. 2.5λ, or 5.25λ)
Wave 4:	
 a) Draw the nodal line b) Measure the Wavelength: cm c) Count the Number of waves represented cm d) Measure the Amplitude: cm e) Calculate the Wave frequency: f = Hz 	(there may be partial waves – e.g. 2.5 λ , or 5.25 λ)
$\sim \sim \sim$	$ \frown \frown \frown \frown \frown$
 Wave 5: a) Draw the nodal line b) Measure the Wavelength: cm c) Count the Number of waves represented cm d) Measure the Amplitude: cm e) Calculate the Wave frequency: f = Hz 	(there may be partial waves – e.g. 2.5λ, or 5.25λ)