\qquad
\qquad

Assignment - Anatomy of a Wave

For each wave:

- Draw the nodal line (use a ruler) - [horizontal line midway between the crest and trough]
- Measure the wavelength in cm (use a ruler)
- State the number of wavelengths represented
- Measure the amplitude in cm (use a ruler)
- If these are electromagnetic waves in space, use the wave equation to determine the frequency of each ($c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}=$ speed of electromagnetic waves in space): $v=f \lambda=c$

Wave 1:
a) Draw the nodal line
b) Measure the Wavelength: \qquad cm
c) Count the Number of waves represented \qquad (there may be partial waves - e.g. 2.5λ, or 5.25λ)
d) Measure the Amplitude: \qquad cm
e) Calculate the Wave frequency: $\mathrm{f}=$ \qquad Hz

Wave 2:
a) Draw the nodal line
b) Measure the Wavelength: \qquad cm
c) Count the Number of waves represented \qquad (there may be partial waves - e.g. 2.5λ, or 5.25λ)
d) Measure the Amplitude: \qquad cm
e) Calculate the Wave frequency: $\mathrm{f}=$ \qquad Hz

\qquad
\qquad

Wave 3:

a) Draw the nodal line
b) Measure the Wavelength: \qquad cm
c) Count the Number of waves represented \qquad (there may be partial waves - e.g. 2.5λ, or 5.25λ)
d) Measure the Amplitude: \qquad cm
e) Calculate the Wave frequency: $\mathrm{f}=$ \qquad Hz

Wave 4:
a) Draw the nodal line
b) Measure the Wavelength: \qquad cm
c) Count the Number of waves represented \qquad (there may be partial waves - e.g. 2.5λ, or 5.25λ)
d) Measure the Amplitude: \qquad cm
e) Calculate the Wave frequency: $\mathrm{f}=$ \qquad Hz

Wave 5:
a) Draw the nodal line
b) Measure the Wavelength: \qquad cm
c) Count the Number of waves represented \qquad (there may be partial waves - e.g. 2.5 λ, or 5.25λ)
d) Measure the Amplitude: \qquad cm
e) Calculate the Wave frequency: $\mathrm{f}=$ \qquad Hz

