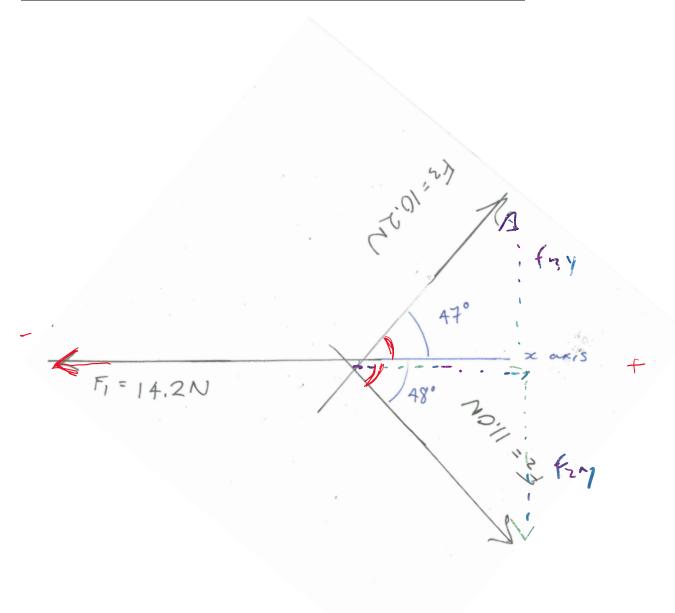

Feb 10, 2021


- Lab Activity: 2-D Vector addition of forces on a stationary object ΣF = 0N
- Tutorial on how to do the data analysis: link to video lesson:

https://www.loom.com/share/71e02473d7fd4fada83b73a4d287748a

Example: Ms Bernabei's sample data:

Establish an x-axis, and use a protractor to measure the angle for each force

Step 3: Determine the values of the angles (direction of the forces):

4. Measure the angles relative to the x-axis: Use a protractor to measure the angles

o $\theta_1 =$ (angle that F_1 makes with the x-axis)

 $\theta_2 = \frac{2}{2} \frac{8}{3}$ (angle that F₂ makes with the x-axis)

o $\theta_3 = \frac{47}{9}$ (angle that F₃ makes with the x-axis)

Step 4: Data Analysis

1. Organize your data in the data table below:

Step 4: Data Analysis

1. Organize your data in the data table below:

Force Vector	Magnitude (in Newtons)	Magnitude of angle $ heta$ (in degrees)	Orientation relative to the x-axis:
F ₁			
F ₂			
F ₃			

Step 4: Data Analysis

1. Organize your data in the data table below:

Force Vector	Magnitude (in Newtons)	Magnitude of angle θ (in degrees)	Orientation relative to the x-axis:
F ₁	14,2N	0°	along the -x axis
F ₂	11.0N	48°	below the +x axis
F ₃	10.2N	470	above the + x axis

2. Graphical Method to determine ΣF (i.e. scale diagram):

- a. On a separate sheet of blank paper draw and label a scale diagram of the vector sum: $\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$
- b. In a different colour draw the resultant vector (the vector arrow that starts at the tail of F_1 and ends at the head of F_3).
- c. <u>Resultant vector</u>: Measure the length of the resultant vector and convert that length into its force value in Newtons. Write the value on your vector diagram.

[** State the value of ΣF in proper vector format, with both magnitude and direction**] 480 F, = 14.2N £3=10.2N = 11.0N

3. Analytical Methods (components) to determine ΣF :

a. Data table: Determine and state the x and y components of each vector:

Force Vector	x component	y component
F ₁		
F ₂		
F ₃		
ector sum: Σ	F _x =	ΣF _V =

** IMPORTANT: Refer to Chapter 1.4 to 1.8 of your textbook for details and examples on vector components!

748°
12 X
4763

	illine and state the x and y compor	ients of each vector:	
Force Vector	. x component	y component	
F ₁	+4,2 N	0 -	
F ₂	= 7.36 N	-11.0 sin 480 = -8,1746	
F ₃	1012 cos 470 -P	10,281n470 = 7,4598	
Vector sum:	ΣFx = 0-1168 N	ΣFy= -0.7148N	

b. Use Pythagorean theorem and trigonometry to calculate the magnitude and direction of ΣF (= vector sum of $\Sigma F_x + \Sigma F_y$)

$$\Sigma F (= \text{ vector sum of } \Sigma F_x + \Sigma F_y)$$
[** State the value of ΣF in proper vector format, with both magnitude and direction**]
$$= \int_{\mathbb{R}^2} F_x^2 + F_y^2 = 7$$

$$\geq F = \int_{\mathbb{R}^2} (0.1168)^2 + (0.7148)^2 = 0.72N$$

$$\leq F_x$$

$$\leq F_x$$

$$\leq F_x$$

$$\leq F_y$$

$$\leq$$

% error \approx % of average force: $[\Sigma F/[(F_1 + F_2 + F_3)/3]] \times 100\% = (show calculation)$

$$= \frac{(0.72)}{(14.2 + 11 + 10.2)} \times 100\% = (6.1\%)$$

Me volen EF=ON

 $\frac{(4.2 + 11 + 10.2)}{(4.2 + 11 + 10.2)} \times 100\% = 6.1\%$