Physics 12 projectile lab: hints for lab write-up

This document provides some advice on how to answer and explain the questions that ask, "Does the graph support projectile motion theory?"

Those questions are:

Data Table \#1 (horizontal component of motion)

- Page 3, $\mathrm{B}(\mathrm{d})$: Referring to the d_{x} vs t graph

Data Table \#2 (vertical component of motion)

- Page 5, A (c): Referring to the d_{y} vs t graph
- Page 5, B (b): Referring to the v_{y} vs t graph

Projectile motion theory - the following are the key points:

- In your lab, assuming that friction is negligible, the only forces acting on the puck after you released it are the force of gravity $\left(F_{g}\right)$ and the Normal force $\left(F_{N}\right)$. Both those forces act in the vertical (y) direction. Therefore, net horizontal force $=0 N\left(\sum F_{x}=0 N\right)$, and the net vertical force is constant and non-zero ($\sum F_{y} \neq$ ON).
- Newton's $2^{\text {nd }}$ Law is applicable to both the horizontal component and the vertical component.
- $\quad \sum F_{x}=m a_{x}=0 N$, therefore $a_{x}=0 \mathrm{~m} / \mathrm{s}^{2}$
- $\sum F_{y}=m a_{y} \neq 0 N$, therefore $a_{y}=$ constant (non-zero)

For each of the 3 questions, discuss and explain the following 3 things (in a few sentences):

> State and explain the expected shape of the graph, and the theory supporting that expectation

- There are 2 possible graph shapes in this lab:
- Linear (straight line)
- Parabolic (a curve that is described by the quadratic equation: $0=a x^{2}+b x+c$)
- Here's an example of how to use theory to predict graph shape: For the horizontal position (d_{x}) vs time (t) graph: Since $\sum F_{x}=0 N$, we know that $a_{x}=0 \mathrm{~m} / \mathrm{s}^{2}$. Therefore v_{x} is constant. Since v_{x} is constant, and the slope of the position vs time graph represents velocity, the slope of the d_{x} vs t graph should be constant. Therefore, the $d_{x} v s t$ graph is expected to be a straight line.
> State the actual shape of your graph
$>$ State whether or not your graph shape is consistent with the expected shape (i.e. does it match the expected shape?).

