March 5, 2024 - Physics 11 lesson
$>$ Warm-up/review
$>$ lesson on elevator problems (and other things that accelerate vertically .. e.g. helicopter, hot air balloon, etc)

Warm up/review

1. A 25.0 kg crate is resting on a rough level surface (ie. the surface is not frictionless). A pushing force of 70.0 N pushes to the right.
a. Draw the FBD for the crate

$\rightarrow \vec{Q}$

$$
\sum f=m a_{x}=f_{p}-f_{f}
$$

b. Develop (set up) the Newton's $2^{\text {nd }}$ Law equation for the system.
vertically $\sum F_{y}=0=f_{N}-m g$, horizontally

$$
a_{y}=0
$$

$$
a_{x} \neq 0
$$

$$
\text { R } m a x=F_{p}-\mu m g
$$

c. If the crate accelerates to the right at a rate of $2.50 \mathrm{~m} / \mathrm{s}^{2}$, determine the value of the since coefficient of friction between the crate and the ground.
 $F_{N}=m y$ in this case

$$
\begin{aligned}
& \mu_{x} m g+m a_{x}=f_{p} \\
& \mu_{k m g}=f_{p}-\text { max }
\end{aligned}
$$

d. If the crate starts from rest, what is it speed after 5.00 seconds?

$$
\begin{aligned}
& v_{i}=0 \\
& a=2.50 \mathrm{~m} / \mathrm{s}^{2} \\
& t=5.00 \mathrm{~s} \\
& v_{f}=?
\end{aligned}
$$

2. A person is standing on a scale on an elevator (e.g. a bathroom scale, or the kind of scale you stand on in the Doctor's office to determine your weight):
sketch
a. Draw the FBD
fld

b. Develop the Newton's $2^{\text {nd }}$ Law equation for the system

$$
\sum \vec{F}=m \vec{a}=F_{N}-m g
$$

$R_{\text {scale }}$ reading
3. An elevator with a mass " m " is suspended by a cable.
a. Draw the FBD
$\uparrow F_{T}=$ farce of tension
 = apparent weight brow heart you feel. Y nt necessarily how nearly you are)
b. Develop the Newton's $2^{\text {nd }}$ Law equation for the system

$$
\Sigma F=m \vec{a}=F_{T}-m g
$$

Dynamics Worksheet booklet

- horizontal $\bar{\sim}$ friction: (μ)
$\# 2,5,7,13,14,19$
- elevator proles: $\neq 8,15,16,20$,
($F=\overrightarrow{\mathrm{m}} \overrightarrow{\mathrm{a}}$) props generally (horizontal)

$$
1,3,4,6,9\left(F_{5}=\mathrm{mg}\right), 17,18,23
$$

concerts $10,11,12$
Lesson ${ }^{\text {Next }}$ Gacuritafion \#21,22,24,25,26

