Lesson video \#1-Conservation of momentum theory, with examples

Link to the lesson video: $\underline{\text { https://www.loom.com/share/8740a63a7a764b349c4e163fc512c87b }}$

The Law of Conservation of momentum = the total momentum of all objects within a system before an interaction (e.g. collision or explosion) $=$ the total momentum of all the objects within the system after the interaction
Definition: "system": A "system" refers to all objects involved in an interaction

- For example:
- when a ball bounces against a wall, the "system" is the ball and the wall
- when a ball is bounced off the ground (Earth), the "system" is the ball and the Earth
- when 2 cars crash into each other, the "system" is both cars
- when a bomb explodes and breaks into many pieces, the "system" is the bomb (1 piece before the collision, and all the pieces after the collision)
- when 2 ice skaters push again each other and slide away in opposite directions, the "system" is the 2 skaters
- When a meteorite crashes into the Earth, the "system" is meteorite and the Earth

The Law of Conservation of Momentum can be understood by considering Newton's $3^{\text {rd }}$ Law (action-reaction).

- Consider the system of 2 ice skaters pushing against each other
- Skater A experiences a force of $F_{B A}$ (the force with which B pushes on A)
- Skater B experiences a force of $F_{A B}$ (the force with which A pushes on B)
- Due to Newton's $3^{\text {rd }}$ Law, we know that $F_{B A}=-F_{A B}$ (equal and opposite)
- So, although each individual object within the system experiences a non-zero net force, the net force of all objects within the system is zero.

So,

$$
\begin{aligned}
& F_{B A}=-F_{A B} \\
& m_{A} \Delta v_{A} / t=-m_{B} \Delta v_{B} / t
\end{aligned}
$$

Since the two objects are part of a system, and the forces they exert are on against each other, the duration (time) is the same for both. So, time can be cancelled out of the equation.

$$
\begin{aligned}
& m_{A} \Delta v_{A}=-m_{B} \Delta v_{B} \\
& m_{A}\left(v_{A}^{\prime}-v_{A}\right)=-m_{B}\left(v_{B}^{\prime}-v_{B}\right) \\
& m_{A} v_{A}^{\prime}-m_{A} v_{A}=-\left(m_{B} v_{B}^{\prime}-m_{B} v_{B}\right) \\
& m_{A} v_{A}^{\prime}-m_{A} v_{A}=-m_{B} v_{B}^{\prime}+m_{B} v_{B}
\end{aligned}
$$

Expanding this equation:

Then, multiplying to removing the brackets:

Then, since $m v=p \ldots$.

$$
p_{A}^{\prime}-p_{A}=-p_{B}^{\prime}+p_{B}
$$

Then, rearrange to gather the "before the interaction" momenta on one side of the equation, and "after the interaction" momenta on the other side:

$$
{\stackrel{\rightharpoonup}{p_{A}}}+\stackrel{\rightharpoonup}{p_{B}}=\stackrel{\rightharpoonup}{p_{A}^{\prime}}+\stackrel{\rightharpoonup}{p_{B}^{\prime}}
$$

So, this means, if p_{T} refers to the sum of the momenta of all objects in the system:

$$
\overrightarrow{\mathrm{p}}_{\mathrm{T}}=\overrightarrow{\mathrm{p}}_{\mathrm{T}},
$$

Examples and applications:

1) A ball bounces off a wall: The ball is A, and the wall is B

$$
\left.\longrightarrow \begin{array}{cc}
p_{T}=p_{T}^{\prime} \\
p_{A}+p_{B}=p_{A}^{\prime}+p_{B}^{\prime} \\
m_{A} V_{A}+m_{B} V_{B}=m_{A} V_{A}^{\prime}+m_{B} V_{B}^{\prime}
\end{array}\right] \operatorname{cons.of}
$$

\rightarrow Before the collision, $\mathrm{v}_{\mathrm{A}}>0$ (positive direction), and $\mathrm{v}_{\mathrm{B}}=0$
After the collision v_{A} is non-zero, in the negative direction, which means v_{B} must be greater than zero, in the positive direction ... but, we don't see the wall move. Why don't we see the wall move?

2) A bomb explodes into 2 pieces (not realistic, but the theory works in real life, where a bomb explodes into many pieces scattering in many directions ... but, for Physics 11 we'll stick with 2 pieces, because then we can stick with 1-D math, rather than 2-D or 3-D).

$$
\left.\begin{array}{rl}
p_{T} & =p_{T}^{\prime} \\
p_{A}+p_{B} & =p_{A^{\prime}}^{\prime}+p_{B}^{\prime} \\
\prime_{A}+m_{B} V_{B} & =m_{A} V_{A}^{\prime}+m_{B} V_{B}^{\prime}
\end{array}\right\} \quad \text { oms. ore }
$$

Before the coltish, the bomb is at rest. So, $p_{T}=0$.
Therefore, after the collision the vector sum of the momenta of the 2 scattered bomb fragments must be zero.

3) Car crash examples: $\operatorname{Car} A\left(m_{A}=1.50 \times 10^{3} \mathrm{~kg}\right)$, and $\operatorname{Car} B\left(m_{B}=9.80 \times 10^{2} \mathrm{~kg}\right)$.
a. Car A is moving North at a speed of $20.0 \mathrm{~m} / \mathrm{s}$, and Car B is stationary. After the collision the 2 cars stick together. Determine the velocity of the 2 cars (together) after the collision.

$$
\begin{gathered}
\vec{P}_{T}=P_{T}^{\prime} \\
m_{A} \vec{V}_{A}+m_{B} \forall_{B}=\left(m_{A}+m_{B}\right) \vec{V}^{\prime} \\
\vec{V}^{\prime}=\frac{m_{A} \vec{V}_{A}}{m_{A}+m_{B}}=\frac{(1500)(20)}{1500+980}=12.1 \mathrm{~m} / \mathrm{s}\left[\mathrm{Nor}^{2} h\right]
\end{gathered}
$$

b. Car A is moving North at a speed of $20.0 \mathrm{~m} / \mathrm{s}$, and Car B is stationary. After the collision Car B moves North at $15.0 \mathrm{~m} / \mathrm{s}$. Determine the velocity of the Car A after the collision.

$$
V_{A}^{\prime}=\frac{m_{A} v_{A}-m_{B} V_{B}^{\prime}}{m_{A}}
$$

$$
=\frac{(1500)(20)-(980)(15)}{1500}=\begin{aligned}
& m_{A}^{\prime}= \\
& 10.2 \mathrm{~m} / \mathrm{s} \\
& {[N \operatorname{corth}]}
\end{aligned}
$$

c. Car A is moving North at a speed of $20.0 \mathrm{~m} / \mathrm{g}$, and Car B is moving South $15.0 \mathrm{~m} / \mathrm{s}$. After the collision the 2 cars stick together. Determine the velocity of the 2 cars (together) after the collision.
$\longrightarrow N+$
$\longleftarrow S$ -

$$
\begin{aligned}
& m_{A} V_{A}+m_{B} V_{B}=m_{A} V_{A}^{\prime}+m_{B} V_{B}^{\prime} \\
&=\left(m_{A}+m_{B}\right) V^{\prime} \\
& V^{\prime}=\frac{m_{A} V_{A}+m_{B} V_{B}}{m_{A}+m_{B}}=\frac{(1500)(20)+(980)(-15)}{1500+980} \\
& V^{\prime}-6.17 m / S\left[N_{\text {or }+h]}\right.
\end{aligned}
$$

d. Car A is moving at $4.00 \mathrm{~m} / \mathrm{s}$ [North], and Car B is moving at $5.00 \mathrm{~m} / \mathrm{s}$ [South]. After the collision Car B rebounds aves at $2.00 \mathrm{~m} / \mathrm{s}$ [North]. Determine the velocity of Car A after the collision.

4) Bullet/block examples:

- mass of the bullet: $m_{b}=20.0$ grams; speed of the bullet before collision $=350.0 \mathrm{~m} / \mathrm{s}$
- mass of the block of wood: $m_{W}=3.00 \mathrm{~kg}$; speed of the block before collision $\mathrm{v}_{\mathrm{w}}=0.00 \mathrm{~m} / \mathrm{s}$
a. After the bullet hits the block it becomes embedded within the block. Determine the speed of the block (with embedded bullet) immediately after the collision.

$$
v^{\prime}=\frac{m_{b} v_{b}}{m_{b}+m_{w}}=\frac{(0.02)(350)}{(0.02)+(3)}
$$

b. After the bullet hits the block it travels completely through the block and emerges with a speed of $150.0 \mathrm{~m} / \mathrm{s}$. Determine the speed of the block immediately after the collision.

$$
\begin{aligned}
v_{w}^{\prime} & =\frac{m_{0} v_{b}-m_{b} v_{b}^{\prime}}{m_{w}}=\frac{m_{b}\left(v_{b}-v_{b}^{\prime}\right)}{m_{w}} \\
& =\frac{(0.02)(350-150)}{3}=1.33 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

c. After the bullet hits the block it bounces off the block and rebounds with a speed of

$$
\begin{aligned}
& m_{b} v_{b}+m_{\omega} v_{\omega}=m_{b} v_{b}^{\prime}+m_{\omega} v_{\omega}^{\prime} \\
& V_{\omega}^{\prime}=\frac{m_{b} v_{b}+m v_{\omega}-m_{b} v_{b}^{\prime}}{m_{\omega}} \\
& =\frac{(0.02)(350)-(0.02)(-100)}{3} \\
& V_{\omega}^{\prime}=2.47 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

