Name:	Block:
-------	--------

Pulley Systems Lab Activity

Pulley system	A	B	C	E V	
Number of					
support cords					
$F_L = load force$					
(weight of hanging mass = mg)					
$F_E = effort force$					
(pulling force – read from					
spring scale)					
d_L = load distance (distance					
the hanging mass moves)					
d_E = pulling force distance					
Mechanical advantage					
$MA = F_L/F_E$					
Work done on load (work out)					
$W_{out} = F_L \times d_L$					
Work done by effort (work in)					
$W_{in} = F_E \times d_E$					
Efficiency					
$= (W_{out} \div W_{in}) \times 100\%$					