## Review Phys 11 Work-Energy-Power - Notes for the Video Lesson

Topic: Mechanical Energy and Power – Physics 11 textbook Chapter 4.3, 4.4, and 4.6

| Key concepts and equations:<br>Video lesson 1: https://www.loom.com/share/a412df9d5dc64a208166f457e681a05c |                                                                               |                                                                                                                                                                       |  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                            | Types of Mechanical Energy:                                                   |                                                                                                                                                                       |  |
| $\bigwedge$                                                                                                | Gravitational Potential Energy:                                               | $E_g = mgh$                                                                                                                                                           |  |
| $\leq$                                                                                                     | Kinetic Energy:                                                               | $E_{K} = \frac{\gamma_{2}}{mv^{2}}$                                                                                                                                   |  |
| ζ                                                                                                          | Work Energy Theorem:                                                          | Net Work = Change in Kinetic Energy $\Sigma W = \Delta E_{\rm K}$                                                                                                     |  |
| (                                                                                                          | Power = Rate of doing work                                                    | $P = W/t = \Delta E/t$                                                                                                                                                |  |
| 0                                                                                                          | Video lesson 2: https://www.loom.com/share/6bff4e04621340cc8b8339164af69be3   |                                                                                                                                                                       |  |
|                                                                                                            | Conservation of Energy:                                                       | $E_i + W_{nc} = E_f$                                                                                                                                                  |  |
|                                                                                                            | )                                                                             | $E_{gi} + E_{Ki} + W_{nc} = E_{gf} + E_{Kf}$<br>mgh <sub>i</sub> + ½mv <sub>i</sub> <sup>2</sup> + W <sub>nc</sub> = mgh <sub>f</sub> + ½mv <sub>f</sub> <sup>2</sup> |  |
|                                                                                                            | Efficiency:                                                                   | <i>efficiency</i> = [energy output/energy input]×100%<br><i>efficiency</i> = [E <sub>out</sub> /E <sub>in</sub> ]×100%                                                |  |
| (                                                                                                          | Lesson:                                                                       |                                                                                                                                                                       |  |
| $\checkmark$                                                                                               | <ul> <li>Theory (development of equations, with unit analysis)</li> </ul>     |                                                                                                                                                                       |  |
|                                                                                                            | <ul> <li>Examples of problem solving strategies</li> </ul>                    |                                                                                                                                                                       |  |
|                                                                                                            |                                                                               |                                                                                                                                                                       |  |
|                                                                                                            | <ul> <li>Week of April 20 – textbook theory questions and problems</li> </ul> |                                                                                                                                                                       |  |
|                                                                                                            | <ul> <li>Week of April 27 – mini-project:</li> </ul>                          |                                                                                                                                                                       |  |
| <ul> <li>Case study – the physics of a sport or activity</li> </ul>                                        |                                                                               |                                                                                                                                                                       |  |



Definition of the forme of reference -where is h= 0???





) J otion Ek= 2ml  $(k_{3})\left(\frac{m^{2}}{5^{2}}\right)$ unit speed Theorem Wark -€ ₹ What ZFXAd ZF=mã maid What =  $V_{f}^{2} = 2\overline{a}\overline{A}\overline{b} + V_{i}^{2}$ gald [Vg -Vi Wret = m (Vg2-Vi  $net = m v_{f}^{2} - m v_{i}^{2}$ KE= Ex===my=  $-\kappa_{f} - E_{ki} = \Delta K E$ Wret 2 if Fp = Ff Free m-DFp Stat Stat -Dy=constat







VIDEO LESSON #2 – Conservation of Energy and Efficiency – Chapter 4.4

SW=AKE  $E_{g} = mgn$  $E_{v} = 1/2mv^{2}$  $P = \frac{1}{4} = \frac{AE}{4}$ roller coaster eg

( f<sup>+</sup>j ) cons. of Energy = energy isn't created or destroyed bugt can change form (Energy transformations) if magical frictionless roller conster C) -> D) (granity only) ETOLEC = ETOPPER D Eget Exc = Ego + ExD  $p/ghc + \frac{1}{2}p/V_c^2 = h/gho + \frac{1}{2}p/V_b^2$  $2ghc + vc^2 = 2ghb + vb^2$  $v_D^2 = 2ghc - 2gho + v_c^2$  $V_p^2 = 2g(hc - h_D) + V_c^2$ some  $\frac{1}{V_s} = 2g(h_i - h_f) + V_i^2$ Wine matrices  $V_s = 2g(h_i - h_f) + V_i^2$ ogir (nu friction + no motor)

forces Conservative Non Her ferms l -3**/9** ég-heat M SPE. Some ic E. light PE (freel) Mitor cher lone KE 2 five Ĝ - . , partied NO v:=O ζ, E' E Wne E: + Ef **P** + Whe= mghf + 12mvf mgt: + 2mv;2 o hi - hf lev rov KmVi mVf Wrc= Wre 2 SER ls E l'a





$$\frac{2gha}{V_{R}^{2} = 2\dot{z}d + v_{i}^{2}} = V_{R}^{2}$$

$$\frac{V_{R}^{2} = 2\dot{z}d + v_{i}^{2}}{V_{R}}$$

$$V_{R} = \int 2gha + v_{R}^{2}$$







